If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-9y+y^2+8=0
a = 1; b = -9; c = +8;
Δ = b2-4ac
Δ = -92-4·1·8
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-7}{2*1}=\frac{2}{2} =1 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+7}{2*1}=\frac{16}{2} =8 $
| 12x+39/3=5x+140/4 | | -28+7x=7-4(-4x-7) | | x-x(.25)=16.5 | | 15+5x=-24-8x | | 3x-2/2x+1=4/5 | | 8y+6+6y=146 | | 8x-6=8(x-6) | | 1/10v+6=11 | | 5y-3y-2y+7=4*4 | | -8.7+2.5a=6.3 | | 3/5f-3=27 | | 1/11x+5/22=5/11 | | 1/3x+3=-21 | | (-2x)(-1x)=1 | | 4r+16/8=3r-12/3 | | 4/5x-1/6=9/2-2x | | 5y-3y-2y+7=16 | | 3x+2(-6x+11)=-5 | | 1/2(n-6)=8 | | 9(x-1)+1=4x+5(-1+x) | | p-8=2/5 | | 4r+16=3r-12 | | -9.9=-3.5+w/4 | | 99x-1)+1=4x+5(-1+x) | | .5(6g+2)=12 | | 13x-26=-52 | | 3(3y-4)=36 | | O.2p=-28 | | 0=3.8t-9.8t^2 | | X=X^2-20x+50 | | 4u+11=43 | | x+8.9=13.9 |